Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Nat Commun ; 15(1): 1393, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360927

RESUMO

Patients affected by neurofibromatosis type 1 (NF1) frequently show muscle weakness with unknown etiology. Here we show that, in mice, Neurofibromin 1 (Nf1) is not required in muscle fibers, but specifically in early postnatal myogenic progenitors (MPs), where Nf1 loss led to cell cycle exit and differentiation blockade, depleting the MP pool resulting in reduced myonuclear accretion as well as reduced muscle stem cell numbers. This was caused by precocious induction of stem cell quiescence coupled to metabolic reprogramming of MPs impinging on glycolytic shutdown, which was conserved in muscle fibers. We show that a Mek/Erk/NOS pathway hypersensitizes Nf1-deficient MPs to Notch signaling, consequently, early postnatal Notch pathway inhibition ameliorated premature quiescence, metabolic reprogramming and muscle growth. This reveals an unexpected role of Ras/Mek/Erk signaling supporting postnatal MP quiescence in concert with Notch signaling, which is controlled by Nf1 safeguarding coordinated muscle growth and muscle stem cell pool establishment. Furthermore, our data suggest transmission of metabolic reprogramming across cellular differentiation, affecting fiber metabolism and function in NF1.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Camundongos , Humanos , Animais , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Transdução de Sinais/fisiologia , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
2.
Mol Metab ; 80: 101876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216123

RESUMO

OBJECTIVE: NF1 is a tumor suppressor gene and its protein product, neurofibromin, is a negative regulator of the RAS pathway. NF1 is one of the top driver mutations in sporadic breast cancer such that 27 % of breast cancers exhibit damaging NF1 alterations. NF1 loss-of-function is a frequent event in the genomic evolution of estrogen receptor (ER)+ breast cancer metastasis and endocrine resistance. Individuals with Neurofibromatosis type 1 (NF) - a disorder caused by germline NF1 mutations - have an increased risk of dying from breast cancer [1-4]. NF-related breast cancers are associated with decreased overall survival compared to sporadic breast cancer. Despite numerous studies interrogating the role of RAS mutations in tumor metabolism, no study has comprehensively profiled the NF1-deficient breast cancer metabolome to define patterns of energetic and metabolic reprogramming. The goals of this investigation were (1) to define the role of NF1 deficiency in estrogen receptor-positive (ER+) breast cancer metabolic reprogramming and (2) to identify potential targeted pathway and metabolic inhibitor combination therapies for NF1-deficient ER + breast cancer. METHODS: We employed two ER+ NF1-deficient breast cancer models: (1) an NF1-deficient MCF7 breast cancer cell line to model sporadic breast cancer, and (2) three distinct, Nf1-deficient rat models to model NF-related breast cancer [1]. IncuCyte proliferation analysis was used to measure the effect of NF1 deficiency on cell proliferation and drug response. Protein quantity was assessed by Western Blot analysis. We then used RNAseq to investigate the transcriptional effect of NF1 deficiency on global and metabolism-related transcription. We measured cellular energetics using Agilent Seahorse XF-96 Glyco Stress Test and Mito Stress Test assays. We performed stable isotope labeling and measured [U-13C]-glucose and [U-13C]-glutamine metabolite incorporation and measured total metabolite pools using mass spectrometry. Lastly, we used a Bliss synergy model to investigate NF1-driven changes in targeted and metabolic inhibitor synergy. RESULTS: Our results revealed that NF1 deficiency enhanced cell proliferation, altered neurofibromin expression, and increased RAS and PI3K/AKT pathway signaling while constraining oxidative ATP production and restricting energetic flexibility. Neurofibromin deficiency also increased glutamine influx into TCA intermediates and dramatically increased lipid pools, especially triglycerides (TG). Lastly, NF1 deficiency alters the synergy between metabolic inhibitors and traditional targeted inhibitors. This includes increased synergy with inhibitors targeting glycolysis, glutamine metabolism, mitochondrial fatty acid transport, and TG synthesis. CONCLUSIONS: NF1 deficiency drives metabolic reprogramming in ER+ breast cancer. This reprogramming is characterized by oxidative ATP constraints, glutamine TCA influx, and lipid pool expansion, and these metabolic changes introduce novel metabolic-to-targeted inhibitor synergies.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Animais , Ratos , Trifosfato de Adenosina/metabolismo , Glutamina/metabolismo , Lipídeos , 60645 , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
3.
Artigo em Chinês | MEDLINE | ID: mdl-38225833

RESUMO

Objective: To summarize the gene therapy strategies for neurofibromatosis type 1 (NF1) and related research progress. Methods: The recent literature on gene therapy for NF1 at home and abroad was reviewed. The structure and function of the NF1 gene and its mutations were analyzed, and the current status as well as future prospects of the transgenic therapy and gene editing strategies were summarized. Results: NF1 is an autosomal dominantly inherited tumor predisposition syndrome caused by mutations in the NF1 tumor suppressor gene, which impair the function of the neurofibromin and lead to the disease. It has complex clinical manifestations and is not yet curable. Gene therapy strategies for NF1 are still in the research and development stage. Existing studies on the transgenic therapy for NF1 have mainly focused on the construction and expression of the GTPase-activating protein-related domain in cells that lack of functional neurofibromin, confirming the feasibility of the transgenic therapy for NF1. Future research may focus on split adeno-associated virus (AAV) gene delivery, oversized AAV gene delivery, and the development of new vectors for targeted delivery of full-length NF1 cDNA. In addition, the gene editing tools of the new generation have great potential to treat monogenic genetic diseases such as NF1, but need to be further validated in terms of efficiency and safety. Conclusion: Gene therapy, including both the transgenic therapy and gene editing, is expected to become an important new therapeutic approach for NF1 patients.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neurofibromatose 1/terapia , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Proteínas Ativadoras de GTPase , Mutação , Predisposição Genética para Doença , Terapia Genética
4.
Brain Res Bull ; 206: 110860, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38143008

RESUMO

Forkhead box A1 (FOXA1), a member of the forkhead family of transcription factors, plays a crucial role in the development of various organ systems and exhibits neuroprotective properties. This study aims to investigate the effect of FOXA1 on Parkinson's disease (PD) and unravel the underlying mechanism. Transcriptome analysis of PD was conducted using three GEO datasets to identify aberrantly expressed genes. A mouse model of PD was generated by injecting neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), resulting in reduced FOXA1 expression. FOXA1 decline was also observed in 1-methyl-4-phenylpyridinium-treated SH-SY5Y cells. Artificial upregulation of FOXA1 improved motor abilities of mice according to rotarod and pole tests, and it mitigated tissue damage, cell loss, and neuronal damage in the mouse substantia nigra or in vitro. FOXA1 was found to bind to the neurofibromin 1 (NF1) promoter, thereby inducing its transcription and inactivating the mitogen-activated protein kinase (MAPK) signaling pathway. Further experimentation revealed that silencing NF1 in mice or SH-SY5Y cells counteracted the neuroprotective effects of FOXA1. In conclusion, this research suggests that FOXA1 activates NF1 transcription and inactivates the MAPK signaling pathway, ultimately ameliorating neuronal damage and motor disability in PD. The findings may offer novel ideas in the field of PD management.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Humanos , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Transtornos Motores/tratamento farmacológico , Neuroblastoma/metabolismo , Neurofibromina 1/metabolismo , Neurofibromina 1/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/metabolismo , Ativação Transcricional
5.
Exp Dermatol ; 32(11): 2012-2022, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37724850

RESUMO

The formation of hypertrophic scars and keloids is strongly associated with mechanical stimulation, and myofibroblasts are known to play a major role in abnormal scar formation. Wounds in patients with neurofibromatosis type 1 (NF1) become inconspicuous and lack the tendency to form abnormal scars. We hypothesized that there would be a unique response to mechanical stimulation and subsequent scar formation in NF1. To test this hypothesis, we investigated the molecular mechanisms of differentiation into myofibroblasts in NF1-derived fibroblasts and neurofibromin-depleted fibroblasts and examined actin dynamics, which is involved in fibroblast differentiation, with a focus on the pathway linking LIMK2/cofilin to actin dynamics. In normal fibroblasts, expression of α-smooth muscle actin (α-SMA), a marker of myofibroblasts, significantly increased after mechanical stimulation, whereas in NF1-derived and neurofibromin-depleted fibroblasts, α-SMA expression did not change. Phosphorylation of cofilin and subsequent actin polymerization did not increase in NF1-derived and neurofibromin-depleted fibroblasts after mechanical stimulation. Finally, in normal fibroblasts treated with Jasplakinolide, an actin stabilizer, α-SMA expression did not change after mechanical stimulation. Therefore, when neurofibromin was dysfunctional or depleted, subsequent actin polymerization did not occur in response to mechanical stimulation, which may have led to the unchanged expression of α-SMA. We believe this molecular pathway can be a potential therapeutic target for the treatment of abnormal scars.


Assuntos
Cicatriz Hipertrófica , Neurofibromatose 1 , Humanos , Miofibroblastos/metabolismo , Actinas/metabolismo , Neurofibromina 1/metabolismo , Fibroblastos/metabolismo , Cicatriz Hipertrófica/metabolismo , Neurofibromatose 1/patologia , Fatores de Despolimerização de Actina/metabolismo , Diferenciação Celular , Células Cultivadas , Fator de Crescimento Transformador beta1/metabolismo
6.
Expert Opin Investig Drugs ; 32(10): 941-957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37747491

RESUMO

INTRODUCTION: NF1 is a tumor suppressor gene encoding neurofibromin, an inhibitor of the RAS/MAPK and PI3K-AKT-mTOR signaling pathways. NF1 germline pathogenic variants cause the tumor predisposition syndrome neurofibromatosis type 1. Targeted therapies (MEK inhibitors) have been approved for benign nerve sheath tumors in neurofibromatosis type 1 patients. NF1 somatic alterations are present in ~5% of all human sporadic cancers. In melanomas, acute myeloid leukemias and lung adenocarcinomas, the NF1 somatic alteration frequency is higher (~15%). However, to date, the therapeutic impact of NF1 somatic alterations is poorly investigated. AREAS COVERED: This review presents a comprehensive overview of targeted therapies and immunotherapies currently developed and evaluated in vitro and in vivo for NF1-altered cancer treatment. A PubMed database literature review was performed to select relevant original articles. Active clinical trials were researched in ClinicalTrials.gov database in August 2022. TCGA and HGMD® databases were consulted. EXPERT OPINION: This review highlights the need to better understand the molecular mechanisms of NF1-altered tumors and the development of innovative strategies to effectively target NF1-loss in human cancers. One of the current major challenges in cancer management is the targeting of tumor suppressor genes such as NF1 gene. Currently, most studies are focusing on inhibitors of the RAS/MAPK and PI3K-AKT-mTOR pathways and immunotherapies.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Genes da Neurofibromatose 1 , Proteínas Proto-Oncogênicas c-akt , Medicina de Precisão , Fosfatidilinositol 3-Quinases/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Physiol Genomics ; 55(10): 415-426, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37519249

RESUMO

Congenital heart disease is the most frequent congenital disorder, affecting a significant number of live births. Gaining insights into its genetic etiology could lead to a deeper understanding of this condition. Although the Nf1 gene has been identified as a potential causative gene, its role in congenital heart disease has not been thoroughly clarified. We searched and summarized evidence from cohort-based and experimental studies on the issue of Nf1 and heart development in congenital heart diseases from various databases. Available evidence demonstrates a correlation between Nf1 and congenital heart diseases, mainly pulmonary valvar stenosis. The mechanism underlying this correlation may involve dysregulation of epithelial-mesenchymal transition (EMT). The Nf1 gene affects the EMT process via multiple pathways, including directly regulating the expression of EMT-related transcription factors and indirectly regulating the EMT process by regulating the MAPK pathway. This narrative review provides a comprehensive account of the Nf1 involvement in heart development and congenital cardiovascular diseases in terms of epidemiology and potential mechanisms. RAS signaling may contribute to congenital heart disease independently or in cooperation with other signaling pathways. Efficient management of both NF1 and cardiovascular disease patients would benefit from further research into these issues.


Assuntos
Doenças Cardiovasculares , Cardiopatias Congênitas , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Genes da Neurofibromatose 1 , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Coração , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/epidemiologia , Doenças Cardiovasculares/genética
8.
Cell Death Dis ; 14(6): 373, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355626

RESUMO

Phosphodiesterase 4D interacting protein (PDE4DIP) is a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterases. PDE4DIP is commonly mutated in human cancers, and its alteration in mice leads to a predisposition to intestinal cancer. However, the biological function of PDE4DIP in human cancer remains obscure. Here, we report for the first time the oncogenic role of PDE4DIP in colorectal cancer (CRC) growth and adaptive MEK inhibitor (MEKi) resistance. We show that the expression of PDE4DIP is upregulated in CRC tissues and associated with the clinical characteristics and poor prognosis of CRC patients. Knockdown of PDE4DIP impairs the growth of KRAS-mutant CRC cells by inhibiting the core RAS signaling pathway. PDE4DIP plays an essential role in the full activation of oncogenic RAS/ERK signaling by suppressing the expression of the RAS GTPase-activating protein (RasGAP) neurofibromin (NF1). Mechanistically, PDE4DIP promotes the recruitment of PLCγ/PKCε to the Golgi apparatus, leading to constitutive activation of PKCε, which triggers the degradation of NF1. Upregulation of PDE4DIP results in adaptive MEKi resistance in KRAS-mutant CRC by reactivating the RAS/ERK pathway. Our work reveals a novel functional link between PDE4DIP and NF1/RAS signal transduction and suggests that targeting PDE4DIP is a promising therapeutic strategy for KRAS-mutant CRC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Colorretais , Proteínas do Citoesqueleto , Neurofibromina 1 , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
9.
J Biol Chem ; 299(6): 104789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149146

RESUMO

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Repressoras , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/genética , Humanos , Linhagem Celular , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Técnicas de Silenciamento de Genes , Transporte Proteico/genética , Ligação Proteica , Estrutura Terciária de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
10.
J Transl Med ; 21(1): 306, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147639

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is the most prevalent and invasive biliary tract malignancy. As a GTPase-activating protein, Neurofibromin 1 (NF1) is a tumor suppressor that negatively regulates the RAS signaling pathway, and its abnormality leads to neurofibromatosis type 1 (NF-1) disease. However, the role of NF1 playing in GBC and the underlying molecular mechanism has not been defined yet. METHODS: A combination of NOZ and EH-GB1 cell lines as well as nude mice, were utilized in this study. mRNA expression and protein levels of NF1 and YAP1 were evaluated by quantitative real-time PCR (qRT-PCR), western blot (WB), and immunohistochemistry (IHC). In vitro and in vivo assays were performed to explore the biological effects of NF1 in NOZ and EH-GB1 cells via siRNA or lv-shRNA mediated knockdown. Direct interaction between NF1 and YAP1 was detected by confocal microscopy and co-immunoprecipitation (Co-IP), and further confirmed by GST pull-down assay and isothermal titration calorimetry assay (ITC). The stability of proteins was measured by western blot (WB) in the presence of cycloheximide. RESULTS: This study showed that a higher level of NF1 and YAP1 was found in GBC samples than in normal tissues and associated with worse prognoses. The NF1 knockdown impaired the proliferation and migration of NOZ in vivo and in vitro by downregulating YAP1 expression. Moreover, NF1 co-localized with YAP1 in NOZ and EH-GB1 cells, and the WW domains of YAP1 specifically recognized the PPQY motif of NF1. The structural modeling also indicated the hydrophobic interactions between YAP1 and NF1. On the other hand, YAP1 knockdown also impaired the proliferation of NOZ in vitro, phenocopying the effects of NF1 knockdown. Overexpression of YAP1 can partially rescue the impaired proliferation in NF1 stably knockdown cells. In mechanism, NF1 interacted with YAP1 and increased the stability of YAP1 by preventing ubiquitination. CONCLUSIONS: Our findings discovered a novel oncogenic function of NF1 by directly interacting with YAP1 protein and stabilizing YAP1 to protect it from proteasome degradation in NOZ cells. NF1 may serve as a potential therapeutic target in GBC.


Assuntos
Neoplasias da Vesícula Biliar , Neurofibromina 1 , Proteínas de Sinalização YAP , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias da Vesícula Biliar/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Humanos , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
11.
Biol Sex Differ ; 14(1): 24, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101298

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is an inherited neurocutaneous disorder associated with neurodevelopmental disorders including autism spectrum disorder (ASD). This condition has been associated with an increase of gamma-aminobutyric acid (GABA) neurotransmission and, consequently, an excitation/inhibition imbalance associated with autistic-like behavior in both human and animal models. Here, we explored the influence of biological sex in the GABAergic system and behavioral alterations induced by the Nf1+/- mutation in a murine model. METHODS: Juvenile male and female Nf1+/- mice and their wild-type (WT) littermates were used. Hippocampus size was assessed by conventional toluidine blue staining and structural magnetic resonance imaging (MRI). Hippocampal GABA and glutamate levels were determined by magnetic resonance spectroscopy (MRS), which was complemented by western blot for the GABA(A) receptor. Behavioral evaluation of on anxiety, memory, social communication, and repetitive behavior was performed. RESULTS: We found that juvenile female Nf1+/- mice exhibited increased hippocampal GABA levels. Moreover, mutant female displays a more prominent anxious-like behavior together with better memory performance and social behavior. On the other hand, juvenile Nf1+/- male mice showed increased hippocampal volume and thickness, with a decrease in GABA(A) receptor levels. We observed that mutant males had higher tendency for repetitive behavior. CONCLUSIONS: Our results suggested a sexually dimorphic impact of Nf1+/- mutation in hippocampal neurochemistry, and autistic-like behaviors. For the first time, we identified a "camouflaging"-type behavior in females of an animal model of ASD, which masked their autistic traits. Accordingly, like observed in human disorder, in this animal model of ASD, females show larger anxiety levels but better executive functions and production of normative social patterns, together with an imbalance of inhibition/excitation ratio. Contrary, males have more externalizing disorders, such as hyperactivity and repetitive behaviors, with memory deficits. The ability of females to camouflage their autistic traits creates a phenotypic evaluation challenge that mimics the diagnosis difficulty observed in humans. Thus, we propose the study of the Nf1+/- mouse model to better understand the sexual dimorphisms of ASD phenotypes and to create better diagnostic tools.


Assuntos
Transtorno do Espectro Autista , Neurofibromatose 1 , Animais , Feminino , Humanos , Masculino , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Ácido gama-Aminobutírico , Neurofibromatose 1/genética , Neurofibromatose 1/complicações , Receptores de GABA-A , Caracteres Sexuais , Neurofibromina 1/genética , Neurofibromina 1/metabolismo
12.
Commun Biol ; 6(1): 436, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081086

RESUMO

Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.


Assuntos
Neurofibromina 1 , Transdução de Sinais , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Proteínas , Humanos
13.
Cell Rep Med ; 4(4): 101010, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37075699

RESUMO

Auf der Maur et al.1 identify neurofibromin 1 (NF1) loss as a mechanism of resistance to PI3K inhibitor in breast cancer cells. NF1 loss leads to enhanced glycolysis, which may be targeted with the antioxidant N-acetyl cysteine (NAC).


Assuntos
Fenômenos Bioquímicos , Neoplasias da Mama , Humanos , Feminino , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo
14.
Pathology ; 55(3): 302-314, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774237

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant multisystem syndrome caused by mutations in the neurofibromin 1 (NF1) gene that encodes for the protein neurofibromin acting as a tumour suppressor. Neurofibromin functions primarily as a GTPase-activating protein for the Ras family of oncogenes, which activates many signalling pathways for cell proliferation and differentiation; without neurofibromin, Ras is constitutively activated, thereby turning on many downstream signalling pathways related to oncogenesis. Patients with NF1 have a well known predisposition for certain types of malignancies including malignant peripheral nerve sheath tumours, gliomas, and breast cancers, as well as a potential association of NF1 with lymphoproliferative disorders such as lymphomas. In this article, we review the pathophysiology and tumourigenesis of NF1, previously reported cases of cutaneous lymphomas in NF1 patients along with our case demonstration of a NF1-associated scalp B-cell lymphoma, and NF1-associated extra cutaneous lymphomas. The diagnosis of lymphomas particularly cutaneous lymphomas may be difficult in NF1 patients as they often have skin lesions and/or cutaneous/subcutaneous nodules or tumours like neurofibromas, which raises the possibility of underdiagnosed cutaneous lymphomas in NF1 patients. We also comprehensively discuss the association between NF1 and lymphomas. In summary, most studies support a potential association between NF1 and lymphomas. Further investigation is needed to clarify the association between NF1 and lymphomas in order to bring clinical awareness of possibly underdiagnosed NF1-associated lymphomas and individualised management of NF1 patients to practice.


Assuntos
Linfoma , Neurofibromatose 1 , Neoplasias Cutâneas , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Mutação , Transdução de Sinais/genética , Neoplasias Cutâneas/complicações
15.
Proc Natl Acad Sci U S A ; 120(5): e2208960120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689660

RESUMO

The majority of pathogenic mutations in the neurofibromatosis type I (NF1) gene reduce total neurofibromin protein expression through premature truncation or microdeletion, but it is less well understood how loss-of-function missense variants drive NF1 disease. We have found that patient variants in codons 844 to 848, which correlate with a severe phenotype, cause protein instability and exert an additional dominant-negative action whereby wild-type neurofibromin also becomes destabilized through protein dimerization. We have used our neurofibromin cryogenic electron microscopy structure to predict and validate other patient variants that act through a similar mechanism. This provides a foundation for understanding genotype-phenotype correlations and has important implications for patient counseling, disease management, and therapeutics.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Humanos , Neurofibromina 1/metabolismo , Neurofibromatose 1/genética , Dimerização , Mutação , Mutação de Sentido Incorreto
16.
Cell Rep ; 41(6): 111623, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351408

RESUMO

A long-standing question in the pancreatic ductal adenocarcinoma (PDAC) field has been whether alternative genetic alterations could substitute for oncogenic KRAS mutations in initiating malignancy. Here, we report that Neurofibromin1 (NF1) inactivation can bypass the requirement of mutant KRAS for PDAC pathogenesis. An in-depth analysis of PDAC databases reveals various genetic alterations in the NF1 locus, including nonsense mutations, which occur predominantly in tumors with wild-type KRAS. Genetic experiments demonstrate that NF1 ablation culminates in acinar-to-ductal metaplasia, an early step in PDAC. Furthermore, NF1 haploinsufficiency results in a dramatic acceleration of KrasG12D-driven PDAC. Finally, we show an association between NF1 and p53 that is orchestrated by PML, and mosaic analysis with double markers demonstrates that concomitant inactivation of NF1 and Trp53 is sufficient to trigger full-blown PDAC. Together, these findings open up an exploratory framework for apprehending the mechanistic paradigms of PDAC with normal KRAS, for which no effective therapy is available.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Mutação , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neurofibromina 1/metabolismo , Neoplasias Pancreáticas
17.
J Am Acad Orthop Surg ; 30(23): e1495-e1503, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400059

RESUMO

Neurofibromatosis type 1 (NF1) is a congenital disease which is caused by mutations in the NF1 gene on chromosome 17, resulting in an altered function of the neurofibromin protein. Owing to the ubiquitous expression of this protein, this syndrome is associated with pathology in many organ systems of the body, especially the central and peripheral nervous, musculoskeletal, and integumentary systems. This review outlines the common sequelae related to a diagnosis of NF1 and the common treatment approach to each.


Assuntos
Neurofibromatose 1 , Ortopedia , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Mutação
18.
Cell Rep ; 40(4): 111095, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35905710

RESUMO

Reoccurring/high-risk neuroblastoma (NB) tumors have the enrichment of non-RAS/RAF mutations along the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that activation of MEK/ERK is critical for their survival. However, based on preclinical data, MEK inhibitors are unlikely to be active in NB and have demonstrated dose-limiting toxicities that limit their use. Here, we explore an alternative way to target the MAPK pathway in high-risk NB. We find that NB models are among the most sensitive among over 900 tumor-derived cell lines to the allosteric SHP2 inhibitor SHP099. Sensitivity to SHP099 in NB is greater in models with loss or low expression of the RAS GTPase activation protein (GAP) neurofibromin 1 (NF1). Furthermore, NF1 is lower in advanced and relapsed NB and NF1 loss is enriched in high-risk NB tumors regardless of MYCN status. SHP2 inhibition consistently blocks tumor growth in high-risk NB mouse models, revealing a new drug target in relapsed NB.


Assuntos
Neuroblastoma , Neurofibromina 1 , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia
19.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35613620

RESUMO

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Assuntos
Neurofibromina 1 , Proteínas Proto-Oncogênicas A-raf , Proteínas Ativadoras de ras GTPase , Receptores ErbB/genética , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Neurofibromina 1/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas A-raf/metabolismo , Transdução de Sinais , Proteínas Ativadoras de ras GTPase/metabolismo
20.
Cell Death Differ ; 29(10): 1996-2008, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35393510

RESUMO

Neurofibromin loss drives neoplastic growth and a rewiring of mitochondrial metabolism. Here we report that neurofibromin ablation dampens expression and activity of NADH dehydrogenase, the respiratory chain complex I, in an ERK-dependent fashion, decreasing both respiration and intracellular NAD+. Expression of the alternative NADH dehydrogenase NDI1 raises NAD+/NADH ratio, enhances the activity of the NAD+-dependent deacetylase SIRT3 and interferes with tumorigenicity in neurofibromin-deficient cells. The antineoplastic effect of NDI1 is mimicked by administration of NAD+ precursors or by rising expression of the NAD+ deacetylase SIRT3 and is synergistic with ablation of the mitochondrial chaperone TRAP1, which augments succinate dehydrogenase activity further contributing to block pro-neoplastic metabolic changes. These findings shed light on bioenergetic adaptations of tumors lacking neurofibromin, linking complex I inhibition to mitochondrial NAD+/NADH unbalance and SIRT3 inhibition, as well as to down-regulation of succinate dehydrogenase. This metabolic rewiring could unveil attractive therapeutic targets for neoplasms related to neurofibromin loss.


Assuntos
Neoplasias , Sirtuína 3 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , NAD/metabolismo , NADH Desidrogenase/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Respiração , Sirtuína 3/genética , Sirtuína 3/metabolismo , Succinato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...